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Abstract - Limit analysis of prismatic torsion bars was the earliest attempt to apply plasticity theory
to a continuum. The simplicity of the problem made it feasible to use the two-dimensional Prandtl
stress function. defined for the elastic torsion problems. for the plastic stress distributions as well.
The gradient of the stress functions for plastic torsion has a constant magnitude. and hence a
function of this type assumes the profile of a sand hill. This sand hill analogy of Nadai (1950. Tire
Tlrl·ory or Fi,m' "",I Fractllre o{ Solid,. McGraw-Hili. U.K.) gave a visual sense of possible non­
smoothness of such stress functions and thus discontinuous stress fields. Many stress functions of
plastic torsion fl'r relatively simple cross-sections have been constructed graphically. However.
collapse modes in terms of warping functions were much less reported. In this paper. we shall
establish a duality theorem which relates the correct stress function to thc correct warping function.
thus providing thc means to obtain complete st'ltic and kinematic solutions. This dual variational
princlplc lcads naturally 10 a gcneral numeric<ll algorithm which gmlr<lntCl:s clll1vcrgence and
<lccuracy. In this p.tpcr. wc shall only prcsent three clIact solutions to verify the theorem. to
ocmonslr'lh: the possihle non·smooth feature of the solutions and to rcitcrate thIS cfTective oU<l1
variatil'n.d aprwach 1\1 limit analysis in gcncral.

INTROOUCTION

The Iheory of perlCl:I plaslil:ily (Prager and Hodge, 1951) has long been applied to analyze
the limit hehavior of strUl:tures by Hodge (llJ5lJ). As modern tedmology pushes for greuter
performalll:e of Illatl:rial dUl:tility and optimal slrul:tur..1design. limit ..nalysis is now studied
with resurgent inlerest. Designs for e.. rth4uake-resist.. nt buildings ..nd bridges. collision­
safe automohiles, ul:l:idelll-iolerani nudear install.. tions... nd light-weight peripher.. l e4uip­
ment to matl:h the lightning speed of computer output <III need the help of limit an<llysis.
However. the methodology <lnd the theoretical foundation of limit analysis known to
engineers arc still at the 1960 level. The issue today is not just the cap..bility of u solution.
We need al:l:ural:Y, etlkienl:y and automation of computer software that can handle large
problems wilh many design parameters. Furthermore, repeated comput<ltions under fac­
torial growth of parameter l:ombinations must be accomplished within a reasonable time
to pral:til:ally adlieve optimal designs. To support the development of limit analysis and
optimal design software, Ihere must be sound mathematical analysis.

The theory of limit <lnalysis has a deceptive simplicity. In fact, its mathematical
structure is still being investigated in the recent research of functional analysis (Strang and
Tem<lm, 1980; Demengcl, 1984; Teman. 1985). and modern calculus of variations (Cesari
I!/ £II.• 1988). Funl:tions involved in limit analysis are often non-smooth. Their derivatives
must be interpreted in a generalized sense presented by Clarke (1983). To analyze the deeper
aspects of these fine points may require advanced tools of mathematics. too technical for
engineers. In this paper, we shall ..void arguments of technicality and use elementary
mathematic.1! language and physil:al intuition to enhance our understanding of certain
abstract results.

Duality theorems and their applil:.. tions to plastic analysis of plates. plane strain and
pbne stress prohlems have been presented by Yang (1987), Liu and Yang (1989) and Huh
..nd Yang (19911 in connel:tion with weak solutions of a variational integral called the
virtual work. A variation.1! principle for pbstic torsion is presented here in the s..me light.

We first state the hasil: assumptions for the plastic torsion problem. A prismatic bar
of arbitr..ry cross-sel:tion is made from a ductile material which may harden under plustic
deformation but has an .Isymptotic beh<lvior (perfect plasticity in the limit) in its stress­
strain relation. The plastic behavior described here is called asymptotically perfect. The
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elastic property of the material. although not required in the analysis. is not explicitly
excluded in the constitutive inequalities. We only assume a large elastic modulus (several
orders greater than the asymptotic yield strength) so that elastic strains are implicitly
neglected in comparison with plastic strains and the overall deformation remains small
bd"ore the impending plastic collapse of the bar. Therefore. up to the point of collapse. a
Lagrangian reference frame can be used to describe the motion and equilibrium about the
undeformed configuration. This departure from the classical rigid perfectly plastic model
docs not change the nature of limit analysis but will broaden its applicability.

The primal (or natural) formulation leads directly to statements that seek the greatest
lower bound attained by the exact static solution. A variational proceJure develops the
dual formulation which minimizes a sharp upper bound functional in terms of admissible
kinematic functions. A duality theorem equates the least upper bound to the greatest lower
bound. We may choose to maximize the lower bound functional or minimize the uppa
bound functional to obtain the limiting torque (collapse load). Solving the primal-dual
problems simultaneously produces complete static and kinematic solutions.

The sand hill analogy of Nadai (1950) made it simple to constrll\:t stress functions
graphically. or by actually using sand to carry out the analogy if the cross-section is
relatively simple. However. in eitha method. no accurate means of evaluating the limiting
torque from the sand hill was ever devdoped. As an improvellll:nt. a half-analytic half­
computational method developed by Yang (1979) successfully derived the ridge line equa­
tions of the sand hills for several non-simple cross-sections. Then a special finite clement
II1tegrationmethod prt1duced limiting torques accurately. ror kinematic solutit.lns in terms
of warping functions. only a line integration method of Mandel (llJ4(1) is available for
simple cross-sections.

In this paper. we return to the fundamentals and conccrn ourselves with the duality
theorem for the plastic torsion problems. It is the modern approach to all limit an;dysis
problems. We shall first present the primal formulation in terms of the Prandtl stress
fUIH.:tion. The Cauchy Schwartz inequality. when applied to the weak equilibrium equation
(virtual work), leads the W;IY to the dual formulation and the duality theorem. Three exact
solutions are presented to demonstrate this duality. Based on this theorem. a general
algorithm has been developed and successfully applied to problems of compkx domains
and dillicult boundary conditions. This algorithm applies also tll a non-linear wave problem
(Osher and Sethian. IlJSl'i). thus furnishing anuther new Ilame propagation analogy (Yang.
Il)lJ t) to the plastic torsion problems.

TIlE PRIMAL FORMULATION

The symmetric 3 x 3 matrix fUllction of the form

( I )

whose non-zero clements are functions of x and y in a domain D. represents a shear stress
distribution in a cross-se~tion of a prisnwtic torsion bar which extends between 0 :::; =:::; I
where I is the length of the bar. By assuming an identi~al stress distribution in every cross­
section. we may therefore regard D as a typical cross-section of the three-dimensional
domain of the bar. It is sullicient to consider only the two stress components a:, and a: o

which form a vector function aE R ~(D). This is only an expediency to condense writing.
We shall return to the three-dimensional domain. D 1 = D x [O./]. of the bar when a descrip­
tion calls for it.

A spccific vector function a(.\'.y) is regarded as a point in the space R ~ ([)). The
statically admissible set S in that space consists of those points that s<ltisfy the equilibrium
equation and static boundary conditions. In the absence of body for~es. we write the non­
trivial equilibrium equation
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Fig. I. A general cross-section of a prismatic torsion bar.

to be satisfied in the domain D. and the stress-free boundary condition

(2)

(3)

on the boundary t!D which is representative of the entire lateml surface of the bar. where
n, and n, are the non-trivi.11 components of its outward normal vector. If the domain D is
multiply connected. then the external boundary is denoted by oDo and the boundaries of
the n holes are denoted by <'D,. i = 1.2.. ..• n and DD = u~iJD" A geneml cross-section
with holes is shown in Fig. I.

The static boundary condition at two end surfaces. : = O. I. is expressed in the integral
form

T =i (xa:,. - ya:.,) dA.
Il

(4)

where Tis the applied torque. All stresses that satisfy (2). (3) and (4) form a set Se R 2(D).
For a ductile material with the property of asymptotically perfect plasticity. the static

equilibrium of the bar can be maintained with negligible deformation for sutl1ciently small
T. As the value of T increases. the static equilibrium will eventually break down as the bar
continues to deform with non-increasing torque. The condition for static admissibility under
the greatest value of T is also the condition for an impending failure (collapse). This ductile
failure also depends on the stress-bearing capacity of the material. A pointwise constitutive
law may be expressed by the asymptotic yield criterion,

(5)

where the Euclidean magnitude of the stress vector is bounded by the material constant k.
the asymptotic yield stress in shear. This pointwise condition, when applied to the entire
domain. forms a set C c R 2(D) whose elements are called constitutively admissible.

The mathematical problem of seeking the greatest value. sup T(a). a e L = S Ii C is
deli ned as the pnmal problem. In engineering notation. we write

maximi:e T(a) = L(xa:. - ya:,) dA

suhjecllo

and

ca:, + oa". _ 0 in D
tJx iJy - ,

a:.,", +a:,n,. = 0 on oD,

(6)
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Let T* == sup T(I1). called the limiting torque. Then all the admissible stress distributions
in D which correspond to T ~ T* form the set L of the lower bound solutions. Since Sand
C are convex sets. the set L is convex. It is non-empty since u == 0 is in the set. It is also
bounded since C is bounded. The supremum of T(a) taken over a convex. non-empty and
bounded set necessarily exists.

Introducing the Prandtl stress function eI>(x.y) such that

eel>
u:< - cy and

eel>
(1:1 == - ;;-.

LX
(7)

the equilibrium eqn (1) is automatically satisfied by any such stress function. The primal
problem (6) expressed in terms of this stress function is given by Yang (1979):

maximi=t: T(cP(x.y)

sl/hjcct to T == 11 cP(x.y) dA + 2 I cP,A,.
D i_I

(/1 == 0 on (~Dll. cP == c/J, on (~D,. i == 1.2.... . n.

and II V (p II ! ~ k. (8)

where (p, is the undetermined constant value of cP on the intern.1I boundary iJD,. A, is the
cross-sectional area of the ith hole and VIP is the gradient vector of cP(x.y). The solution
to problem (X) determines P == Till." and cP*(x.y) in D. induding c'D.

It has been shown that the maximization of (X) will drive the yield criterion (5) to its
upper bound such that 1I'1(/1II! == k for every point in D. The optimal solution (/1*(x.y) is a
surface 01" constant absolute gradient. For a simply connected domain D. such a surface
can be made by building a sand hill on a horizont.1I platform of D. Under gravity. sand
will slide under a constant slope. Thus the profile of the sand hill will assume a surface of
constant absolute gradient. This sand hill analogy becomes a less manageable set-up when
D has holes. Worse yet. there exists no convenient method of integrating the sand hill
volume to obt.tin the limiting torque r*.

DUALITY

A standard tool in functional analysis (Royden. 1988), is the upper or lower bounding
of a functional by another functional. For instance. instead of seeking the maximum of the
original functional. we seek its least upper bound (the supremum). By minimizing an upper
bound functional. we may recover the maximum of the original functional. This method
of analysis will succeed only if the inequality relating the original functional to the upper
bound functional is sharp such that the equality is inclusive. A functional which is bounded
above has a supremum. A functional which is bounded below has an infemum. The theorem
that equates the least upper bound to the maximum or the greatest lower bound to the
minimum of a functional is called duality.

We begin with the weak equilibrium equation involving the original 3 x 3 stress
matrix 11,

( u'(V·u)dV==O.
In'

(9)

where t transposes a vector. V' is the divergence operator in R.1 and the vector valued function
u = (- (}:y. O:x. Ot/t(x•.1'»' is chosen with a constant () and an arbitrary warping function
t/t(x.y) in the set K c R(D) to be defined as the set of kinematically admissible functions.
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Integrating (9) by parts under a general divergence theorem and using the boundary
conditions (3) and (4). we obtain after some simplification

(10)

where the integrand may be regarded as the inner product of the stress vector aE R~(D)

and the vector valued function called the strain rate.

(

21/1 _Y)ex
6 = cl/l '

ey +X

(II)

defined in the domain D. Using the Cauchy-Schwarz inequality and the constitutive
inequality (5), we may rewrite (10) as

T = 1, a' 6 dA ~ 1, II all ~ 11611 ~ dA ~ k 1, II &112 dA = t

where a sharp upper bound functional f(I/I(x,y» ~ T(e/>(x.y» is obtained.
The dual formulation, which seeks the least upper bound by solving

( 12)

( 13)

is a standard calculus of variation problem without constraint. Cesari e/ al. (19llll) have
rCl.:cntly proved that the absolute minimum of sUl.:h an integral exists. The sharpness of the
inc4ualities in (12) and the existence of the absolute minimum of (13) constitute the proof
of the duality theorem for the plastic torsion problem:

min f(I/I(x. ~,» = T* = max T(c/>(x, v»
" "K' .peL'

( 14)

where T· is the limiting torque. The elements of K and L are continuous functions defined
in D. The functions in L must satisfy the constraint conditions in (8) while the functions in
K have no constraint. Unlike the other limit analysis problems where the integrands involved
in the integral functionals may contain unbounded but integrable measures. the torsion
problems are devoid of such complications. Any ordinary numerical method, combining
discretization and optimization, can be applied to the primal problem (8) and the dual
problem (13). In this paper. we are concerned only with some exact solutions to demonstrate
the theoretical aspects presented. The correct pair of a stress function and a warping
function constitute the complete solution and give the unique limiting torque.

EXAMPLES

Three examples including bars of circular, square and rectangular cross-section are
presented in this section. Although the solutions to these problems are well known. the
purpose here is to demonstrate the duality theorem which is not. Numerical solutions of
complicated cross-sections computed by a new algorithm based on the duality theorem are
presented by Yang (1991).
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Since these three cross-sections are simply connected we may rewrite (8) in a simpler
form.

maximi=e T = 21 cP(x.)') dA,

subject to cP = 0 on cD,

and II VcPli z ~ k. (15)

For the circular bar of radius a, the solution of (15) is a cone. In a polar coordinate.

cP*(r) = k(a-r) 0 ~ r ~ a, (16)

which has .1 constunt grudicnt -k; equals zero on the boundury; und yields the limiting
torque T* = inka '.

By uxisymmetry, no warping of the circular cross-section should be expected. Hence"'* == 0 und from (13), we obtuin

( 17)

and confirm the duality theorem (14).
Although the square und rcctungular bars belong to the same fumily. different aspect

ratios of the cross-sections cause great chunges in warping functions. We shall treat these
bars separately.

First, consider a 2a x 2a square bar whose plastic stress function is a pyramid with a
height ka on the square base. It is easy to verify that this pyramid function satisfies all the
constraints in (15). The corresponding torque equals twice the volume of the pyramid,

A trial warping function is chosen as

"'(x.y) = [x sign (y)-y sign (x)] min {lxl.IYI},

(18)

(19)

which is obviously continuous in D. Substituting (19) into (13) and observing the symmetry
of the integrand. the integration needs be carried out only in one-eighth of the domain D.
We choose the sub-domain {(x,y): 0 ~ x ~ a. 0 ~ y ~ a. x ~ y} and obtain

(20)

We have indeed found the optimal solutions cP* = cPpy,amid' "'* = l{tl'ial and verified the duality
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Fig. :!. The contours of stress and warping functions for a :!a x :!a torsion bar.

T(r/J.) = T(I/I·) = 8ka Jj3. The contour maps of q,·(x.y) and I/I·(x.y) are shown in Fig.
2a.b.

Where the solid contours have positive values. the dashed 1/1 contours are negative and
the dashed lines in the map of q, are ridge lines where the derivatives of q, are discontinuous.
Since the warping function can be scaled by an arbitrary constant. the absolute values of
the contours <lfe immaterial.

Consider now a torsion bar with a 4a x 2a cross-section. It is well known that the exact
stress function for the n.:ctangular bars is in the form of a roof function. as shown in Fig.
3a. For this particular b"lr. the volume under the roof can be calculated to give the limiting
torque. T* = 20ka \/3.

Again. using the symmetry of the proolelll. the integration in (13) needs be carried out
only in the lirst quadrant. We further divide the first quadrant. [0. 2a} x [0. al. into three
suh-domains

D I = {(x.y):x-a~y:.

D! = {(x.y): 0 ~ x-a ~ yI.
D! = {(x.y): () ~ x ~ til.

The warping function in the first quadrant is ddined by

{

V(X-1'-2a). in D I

1/1(x.y) = (x-a)1- xy• in D2

-xy. in D)

(21)

(22)

which is continuous across the boundaries of D I • D 2 and DJ • Its symmetric extension is
continuous in D. Substituting (22) into (13) and multiplying the result by four to cover the
entin: domain D. wt: obtain

(23)

which agrees with the limiting torque c"llculatt:d earlier from the roof function. !-knce the
roof function and the warping function defined in (22) arc the correct pair of static and
kinematic solutions. The contour maps of these two functions are shown in rig. 3a. b. The
(x.y) coordin..ttes arc rotated from the usual orientation so that the maps fit well in the
width of the page.

There is a m<.trked change in the warping function from the square to this rectangular
domain. In the square (20 x 2a) domain. 1/1. alternates its sign eight times as a point travels
along a closed. convex curve around the origin. In the 4a x 2a domain. the sign changes
only four times. The transition can be seen in a 3a x 2a domain for which the contour maps
are shown in Fig. 4a. b. where two pairs of warping waves near the short edges of the
rectangle first ..hrink th":l1 disappear as the aspect ratio increases.
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Fig. 3. The contours of stress and warping functions for a 4</ x 2a torsion bar.
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FINAL REMARKS

There seems to be a misconception in the mechanics community that the issue of
general upper and lower bound theorems for limit analysis has long been closed. In fact
the proof of a duality theorem in plasticity remains an open topic in functional analysis.
When one is presented, it usually entails the tcchnical and sometimes ncw language of
modern mathematics. The following scenario is not uncommon. A mathematician's highly
technical proof and an engineer's highly intuitive solution of a plasticity problem met with
polite silence or superficial communication in mixed company. Yet each needs thc other's
deeper insight to advance the state of science for the non-one-to-one, non-linear, and
non-smooth problems encountered in the mathematical theory of plasticity, as well as in
engineering applications.

A duality theorem under very broad proposition does not solve all the problems in
special cases, The smoothness of a constitutive model. the boundary shape and loading all
have a bearing on the non-smoothness and lack of uniqueness of the limit solutions. Each
sub-class of problems such as plate, plane strain and plane stress, etc. possesses special
characteristics and merits an independent study. We have a general proof of the duality
theorem for plastic torsion problems. Three concrete examples with exact st<ltic and kine­
matic solutions have verified the abstract results and demonstrated the non-smooth nature
of the solutions.
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Since the stress and strain rate components are related to the derivatives of a stress
function and a warping function respectively. these derivatives of non-smooth but con­
tinuous functions have finite jumps. Hence the stress and strain rate in plasticity belong to
a class of functions called BV [bounded variation. Volpert (1967)] by mathematicians. The
BV functions are studied under the deeper topics of functional analysis and calculus of
variations as in the references cited. Engineers have produced many relatively simple BV
solutions in plasticity and called them kinematically admissible (the class K mentioned
earlier). The definition of K has been rather vague in the engineering literature. We intend
to use the results in modern functional analysis to help define K precisely for each class
of problems in plasticity. Identifying the correct function space is vitally important in
approximations such as the finite element and the finite difference methods. For plastic
torsion problems. the stress functions and warping functions are absolutely continuous and
their first partial derivatives belong to BV.

For a stress distribution C1E BV. how does it satisfy the differential equation of equi­
librium (2) when the derivatives of the stress components along a ridge line are unbounded?
The answer lies in either of the following two interpretations: the unbounded derivatives
in (2) are equal but opposite in sign so they add up to zero. The other interpretation is the
standard weak (integral) equation such that any finite element of D is in equilibrium.

Although this paper is intended only as an exposition for the theoretical aspects of the
problem considered. the duality theorem (14) is a fundamental basis for good numerical
algorithms. The uniquc optimality of the primal-dual problems and convergence of an
itcrativc algorithm can bc obtained by thc closing of thc duality gap. Howcver. the uniquc­
ncss ofthc static and kincmatic solutions cannot be guarantced. This can also be undcrstood
from an engineering viewpoint that the collapse modes may not be unique in rcality.
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