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Abstract — Limit analysis of prismatic torsion bars was the earliest attempt to apply plasticity theory
to a continuum. The simplicity of the problem made it feasible to use the two-dimensionual Prandtl
stress function. defined for the elastic torsion problems, for the plastic stress distributions as well.
The gradient of the stress functions for plastic torsion has a constant magnitude. and hence a
function of this type assumes the profile of a sand hill. This sand hill analogy of Nadai (1950, The
Theory of Flow and Fracture of Solids. McGraw-Hill, U.K.) gave a visual sense of possible non-
smoothness of such stress functions and thus discontinuous stress ficlds. Many stress functions of
plastic torsion for relatively simple cross-sections have been constructed graphically. However,
collapse modes in terms of warping functions were much less reported. Ia this paper. we shall
establish a duality theorem which relates the correct stress function to the correct warping function,
thus providing the means to obtuin complete static and kinematic solutions. This dual variational
principle leads naturally to a general numerical algorithm which guitrantees convergence and
accuracy. In this paper. we shall only present three exact solutions to verity the theorem, to
demonstrate the possible non-smooth feature of the solutions and to reiterite this effective dual
variational approach to linit analysis in general.

INTRODUCTION

The theory of perfect plasteity (Prager and Hodge, 1951) has long been applied to analyze
the limit behavior of structures by Hodge (1959). As modern technology pushes for greater
performance of material ductility and optimal structural design, limit analysis is now studied
with resurgent interest. Designs for carthquake-resistant buildings and bridges, collision-
safe automobiles, accident-tolerant nuclear installations, and light-weight peripheral equip-
ment to match the lightning speed of computer output all need the help of limit analyss.
However, the methodology and the theoretical foundation of limit analysis known to
engineers are still at the 1960 level. The issue today is not just the capability of a solution.
We need accuracy, efliciency and automation of computer software that can handle large
problems with many design parameters. Furthermore, repeated computations under fac-
torial growth of puarumeter combinations must be accomplished within a reasonable time
to practically achieve optimal designs. To support the development of limit analysis and
optimal design softwure, there must be sound mathematical analysis.

The theory of limit analysis has a deceptive simplicity. In fact, its mathematical
structure is still being investigated in the recent research of functional analysis (Strang and
Temam, 1980 ; Demengel, 1984 ; Teman, 1985), and modern calculus of variations (Cesari
et al., 1988). Functions involved in limit analysis are often non-smooth. Their derivatives
must be interpreted in a generalized sense presented by Clarke (1983). To analyze the deeper
aspects of these fine points may require advanced tools of mathematics, too technical for
engineers. In this paper, we shall avoid arguments of technicality and use elementary
mathematical language and physical intuition to enhance our understanding of certain
abstract results,

Duality theorems and their applications to plastic analysis of plates, plane strain and
plane stress problems have been presented by Yang (1987), Liu and Yang (1989) and Huh
and Yang (1991) in tonnection with weak solutions of a variational integral called the
virtual work. A variational principle for plastic torsion is presented here in the same light.

We first state the basic assumptions for the plastic torsion problem. A prismatic bar
of arbitrary cross-section is made from a ductile material which may harden under plastic
deformation but has an asymptotic behavior (perfect plasticity in the limit) in its stress—
strain relation. The plastic behavior described here is called asymptotically perfect. The
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elustic property of the matenal, although not required in the analysis. 1s not explicitly
excluded in the constitutive inequalities. We only assume a large elastic modulus (several
orders greater than the asymptotic yield strength) so that elastic strains are implicitly
neglected tn comparison with plastic strains and the overall deformation remains small
before the impending plastic collapse of the bar. Therefore, up to the point of collapse. a
Lagrangian reference frame can be used to describe the motion and equilibrium about the
undeformed configuration. This departure from the classical rigid - perfectly plastic model
does not change the nature of limit analysis but will broaden its applicability.

The primal (or natural) formulation leads directly to statements that seek the greatest
lower bound attained by the exact static solution. A variational procedure develops the
dual formulation which minimizes a sharp upper bound functional in terms of admissible
kinematic functions. A duality theorem equates the least upper bound to the greatest lower
bound. We may choose to maximize the lower bound functional or minimize the upper
bound functional to obtain the limiting torque (collapse load). Solving the primal-dual
problems simultaneously produces complete static and kinematic solutions.

The sand hill analogy of Nadai (1950) made it simple to construct stress functions
graphically. or by actually using sand to carry out the analogy it the cross-section is
relatively simple. However, in either method. no accurate means of evaluating the limiting
torque from the sand hill was ever developed. As an improvement, a half-analytic half-
computational method developed by Yang (1979) successfully derived the ridge line equa-
tions of the sand hills for several non-simple cross-sections. Then a special finite clement
mtegration method produced limiting torques accurately. For kinematic solutions in terms
of warping tfunctions, only a line integration method ol Mandel (1946) 15 avatluble for

in this paper, we return to the fundamentals and concern ourselves with the duality
theorem for the plastic torsion problems. IUis the modern approach to all hmit analysis
problems. We shall first present the primal formulation in terms of the Prandd stress
function. The Cauchy Schwartz inequality, when applied to the weak equilibrivm equation
(virtual work), leads the way to the dual formulation and the duality theorem. Three exact
solutions are presented to demonstrate this duality. Based on this theorem, a general
algorithm has been developed and suceesstully applied to problems of complex domains
and diflicult boundary conditions. This algorithm applies also to 4 non-lincar wave problem
(Osher and Scthian, 1988), thus furnishing another new flame propagation analogy (Yang,
1991} to the plastic torsion problems.

THE PRIMAL FORMULATION

The symmetric 3 x 3 matrix function of the form

0 0 o,
e=|0 0 0.]| (n
o, o, 0

whose non-zero elements are functions of x and y in a domain D, represents a shear stress
distribution in a cross-section ot a prismatic torsion bar which extends between 0 € 2 </
where /s the length of the bar. By assuming an identical stress distribution in every cross-
section, we may therefore regard D as a typical cross-section of the three-dimensional
domain of the bar. It is sufficient to consider only the two stress components g, and o,
which form a vector function o€ R*(D). This is only an expediency to condense writing,
We shall return to the three-dimensional domain, D' = D x [0, /], of the bar when a descrip-
tion calls for it.

A specitic vector function a(x.y) is regarded as a point in the space R(D). The
statically admissible set S in that space consists of those points that satisty the equilibrium
equation and static boundary conditions. In the absence of body forces, we write the non-
trivial equilibrium equation
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Fig. 1. A general cross-section of a prismatic torsion bar.
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to be satisfied in the domain D, and the stress-free boundary condition
.. +G:|'ns' = O (3)

on the boundary D which is representative of the entire lateral surface of the bar, where
n. and n, are the non-trivial components of its outward normal vector. If the domain D is
multiply connected, then the external boundary is denoted by 9D, and the boundaries of
the # holes are denoted by D, i = 1,2,...,n and 0D = U} dD,. A general cross-section
with holes is shown in Fig. 1.

The static boundary condition at two end surfaces, = = 0, /, is expressed in the integral
form

T= j (xo,, —ya.)dA, €))]
n

where T is the applied torque. All stresses that satisfy (2), (3) and (4) form a set Se R*(D).

For a ductile material with the property of asymptotically perfect plasticity, the static
equilibrium of the bar cun be maintained with negligible deformation for sufficiently small
T. As the value of T increases, the static equilibrium will eventually break down as the bar
continues to deform with non-increasing torque. The condition for static admissibility under
the greatest value of T is also the condition for an impending failure (collapse). This ductile
failure also depends on the stress-bearing capacity of the material. A pointwise constitutive
law may be expressed by the asymptotic yield criterion,

lolly = Jak+al <k, (5)

where the Euclidean magnitude of the stress vector is bounded by the material constant &,
the asymptotic yield stress in shear. This pointwise condition, when applied to the entire
domain, forms a set C = R*(D) whose elements are called constitutively admissible.

The mathematical problem of secking the greatest value, sup T(6), e L = SN C is
detined as the primal problem. In engineering notation, we write

maximize T(o) = J (xo.,—yo.)dA
D

do.. do.,

subjectto ==+ ===0 in D,
dx dy
o.n.+a.,n, =0 on 3D,

and lel, < k. 6)
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Let T* = sup T(o). called the limiting torque. Then all the admissible stress distributions
in D which correspond to 7 < T* form the set L of the lower bound solutions. Since .S and
C are convex sets. the set L is convex. It is non-empty since ¢ = 0 is in the set. It is also
bounded since C is bounded. The supremum of T(o) taken over a convex. non-empty and
bounded set necessarily exists.

Introducing the Prandtl stress function ¢(x. ) such that

éo

and 0'_." = - E‘j .

)]

‘:ni ()

the equilibrium eqn (2) is automatically satisfied by any such stress function. The primal
problem (6) expressed in terms of this stress function is given by Yang (1979):

maximize T(Pp(x, 1))

subjectto T =21 ¢p(x.y)dd+2 Z ¢, A,
D

i= ]
d=0oncD,, ¢p=¢,oncD,. i=12....n
and IVl . <k, (8)

where ¢, 1s the undetermined constant value of ¢ on the internal boundary ¢D,. 4, is the
cross-sectional arca of the ith hole and V¢ is the gradient vector of ¢(x, v). The solution
to problem (8) determines 7* = T, and ¢*(x. ») in D, including ¢D.

1t has been shown that the maximization of (8) will drive the yield criterion (5) to its
upper bound such that [V, = k for every point in D. The optimal solution ¢*(x,y) is a
surface of constant absolute gradient. For a simply connected domain D, such a surface
can be made by building a sand hill on a horizontal platform of D. Under gravity, sund
will slide under a constant slope. Thus the profile of the sund hill will assume a surface of
constant absolute gradient. This sand hill analogy becomes a less manageable set-up when
D has holes. Worse yet, there exists no convenient method of integrating the sand hill
volume to obtain the limiting torque T*.

DUALITY

A standard tool in functional analysis (Royden, 1988), is the upper or lower bounding
of a functional by another functional. For instance, instead of seeking the maximum of the
original functional, we seek its least upper bound (the supremum). By minimizing an upper
bound functional, we may recover the maximum of the original functional. This method
of analysis will succeed only if the inequality relating the original functional to the upper
bound functional is sharp such that the equality is inclusive. A functional which is bounded
above has a supremum. A functional which is bounded below has an infemum. The theorem
that equates the least upper bound to the maximum or the greatest lower bound to the
minimum of a functional is called duality.

We begin with the weak equilibrium equation involving the original 3 x3 stress
matrix g,

j w'(V-o)dV =0, 9
n‘

where ¢ transposes a vector, V- is the divergence operator in R* and the vector valued function
u=(—0zy,0=x,00(x,3)) is chosen with a constant # and an arbitrary warping function
Y(x.y) in the set K < R(D) to be defined as the set of kinematically admissible functions.
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Integrating (9) by parts under a general divergence theorem and using the boundary
conditions (3) and (4). we obtain after some simplification

T= L [a_.,, (‘;—'ﬁ —y)+¢_._.. (g% +.t)] dA, (10

where the integrand may be regarded as the inner product of the stress vector g€ R*(D)
and the vector valued function called the strain rate,

o
o 1
o | (11)

— +X
dy

defined in the domain D. Using the Cauchy-Schwarz inequality and the constitutive
inequality (5), we may rewrite (10) as

T=Ja’ed‘4sj. ol :llell.dA <kj lel,dd =T (12)
D n n

where a sharp upper bound functional T(¥(x, ¥)) = T($(x. v)) is obtained.
The dual formulation, which secks the least upper bound by solving

NG N
minimize k \/(c!/z —y) + v +x ] d4A, (13)
n (7x (7}'

is u standard calculus of variation problem without constraint. Cesari ef af. (1988) have
recently proved that the absolute minimum of such an integral exists, The sharpness of the
inequalities in (12) and the existence of the absolute minimum of (13) constitute the proof
of the duality theorem for the plastic torsion problem :

min TW(x.y)=T*= max T(¢(x. »)) (14)

where T* is the limiting torque. The elements of K and L are continuous functions defined
in D. The functions in L must satisfy the constraint conditions in (8) while the functions in
K have no constraint. Unlike the other limit analysis problems where the integrands involved
in the integral functionals may contain unbounded but integrable measures, the torsion
problems are devoid of such complications. Any ordinary numerical method, combining
discretization and optimization, can be applied to the primal problem (8) and the dual
problem (13). In this paper, we are concerned only with some exact solutions to demonstrate
the theoretical aspects presented. The correct pair of a stress function and a warping
function constitute the complete solution and give the unique limiting torque.

EXAMPLES

Three examples including bars of circular, square and rectangular cross-section are
presented in this section. Although the solutions to these problems are well known, the
purpose here is to demonstrate the duality theorem which is not. Numerical solutions of
complicated cross-sections computed by a new algorithm based on the duality theorem are
presented by Yang (1991).
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Since these three cross-sections are simply connected we may rewrite (8) in a simpler
form,

maximize T = ZJ ¢(x.v)dA,
D
subjectto ¢ =0onéD,
and Vol <k. (15)
For the circular bar of radius a. the solution of (15) is a cone. In a polar coordinate,

*(ry=k{a-r) 0<r<a (16)

which has a constant gradient —4A; equals zero on the boundary : and yields the limiting
torque T* = inka'.

By axisymmetry, no warping of the circular cross-section should be expected. Hence
Y* = 0 and from (13). we obtain

) = k j AT A = ke’ = T an
i

and confirm the duality theorem (14),

Although the square and rectangular bars belong to the same family, different aspect
ratios of the cross-sections cause great changes in warping functions. We shall treat these
bars separately.

First, consider a 2a x 2a square bar whose plastic stress function is a pyramid with a
height ku on the square base. It is easy to verify that this pyramid function satisfies all the
constraints in (15). The corresponding torque equals twice the volume of the pyramid,

T({bpymmid) = gkd", (18)
A trial warping function is chosen as
Y(x.y) = [xsign () —y sign (x)] min {|x]. | 3]}, 9

which is obviously continuous in D. Substituting (19) into (13) and observing the symmetry
of the integrand. the intcgration needs be carried out only in one-cighth of the domain D.
We choose the sub-domain {(x,3}:0 € x € 4,0 € y €4, x 2y} and obtain

TWm) = Sk[r J 2(x—p)dx d_v] = Yka. (20)

We have indeed found the optimal solutions ¢* = ¢,,rumia- ¥* = ¥iq and verified the duality
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Fig. 2. The contours of stress and warping functions for a 2a x 2a torsion bar.

T(¢*) = T(y*) = 8ka'/3. The contour maps of ¢*(x.y) and Y*(x.v) are shown in Fig.
2a.b.

Where the solid contours have positive values, the dashed i contours are negative and
the dashed lines in the map of ¢ are ridge lines where the derivatives of ¢ are discontinuous.
Since the warping function can be scaled by an arbitrary constant, the absolute values of
the contours are immaterial.

Consider now a torsion bar with a 4a x 2¢ cross-section. 1t is well known that the exact
stress function for the rectangular bars is in the form of a roof function. as shown in Fig.
Ja. For this particular bar, the volume under the roof can be calculated to give the limiting
torque, T* = 20ka'/3.

Again, using the symmetry of the problem, the integration in (13) needs be carried out
only in the first quadrant. We turther divide the first quadrant, [0, 2a] x [0, «]. into three
sub-domains

D= {{x. ) x—a =),
D,

Dy={{x): 0L x<al. an

i

a0 x—a<yl,

The warping function in the first quadrant is defined by

yx—y—-24), inD,
(X y) =< (x—a)’~xy, inD, (22)

- Xy, inD,

which is continuous across the boundaries of Dy, D, and D,. Its symmetric extension is
continuous in D. Substituting (22) into (13) and multiplying the result by four to cover the
entire domain D, we obtain

Tw) = ¥ka® (23)

which agrees with the limiting torque calculated carlier from the roof function. Hence the
roof function and the warping function defined in (22) are the correct pair of static and
kinematic solutions. The contour maps of these two functions are shown in Fig. 3a.b. The
{x. ) coordinatcs arc rotated from the usual orientation so that the maps fit well in the
width of the page.

There is a marked change in the warping function from the square to this rectangular
domain. In the square (24 x 2a¢) domain, §* alternates its sign eight times as a point travels
along a closed, convex curve around the origin. In the 4a x 2a domain, the sign changes
only four times, The transition can be seen in a 3u x 2 domain for which the contour maps
are shown in Fig. 4a.b, where two pairs of warping waves near the short edges of the
rectangle first shrink then disappear as the aspect ratio increases.
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Fig. 3. The contours of stress and warping functions for a Ja x 2a torsion bar.
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Fig. 4. The contours of stress and warping functions for a Ju x 2a torsion bar.

FINAL REMARKS

There seems to be a misconception in the mechanics community that the issuc of
general upper and lower bound theorems for limit analysis has long been closed. In fact
the proof of a duality theorem in plasticity remains an open topic in functional analysis.
When one is presented, it usually entails the technical and sometimes new language of
modern mathematics. The following scenario is not uncommon. A mathematician’s highly
technical proof and an engineer’s highly intuitive solution of a plasticity problem met with
polite silence or superficial communication in mixed company. Yet cach needs the other's
deeper insight to advance the state of science for the non-one-to-one, non-lincar, and
non-smooth problems encountered in the mathematical theory of plasticity, as well as in
engineering applications.

A duality theorem under very broad proposition does not solve all the problems in
special cases. The smoothness of a constitutive model, the boundary shape and loading ali
have a bearing on the non-smoothness and lack of uniqueness of the limit solutions. Each
sub-class of problems such as plate, plane strain and plane stress, etc. possesses special
characteristics and merits an independent study. We have a general proof of the duality
theorem for plastic torsion problems. Three concrete examples with exact static and kine-
matic solutions have verified the abstract results and demonstrated the non-smooth nature

of the solutions.
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Since the stress and strain rate components are related to the derivatives of a stress
function and a warping function respectively. these derivatives of non-smooth but con-
tinuous functions have finite jumps. Hence the stress and strain rate in plasticity belong to
a class of functions called BV [bounded variation, Volpert (1967)] by mathematicians. The
BV functions are studied under the deeper topics of functional analysis and calculus of
variations as in the references cited. Engineers have produced many relatively simple BV
solutions in plasticity and called them kinematically admissible (the class K mentioned
earlier). The definition of K has been rather vague in the engineering literature. We intend
to use the results in modern functional analysis to help define K precisely for each class
of problems in plasticity. Identifying the correct function space is vitally important in
approximations such as the finite element and the finite difference methods. For plastic
torsion problems. the stress functions and warping functions are absolutely continuous and
their first partial derivatives belong to BV.

For a stress distribution o€ BV, how does it satisfy the differential equation of equi-
librium (2) when the derivatives of the stress components along a ridge line are unbounded?
The answer lies in either of the following two interpretations: the unbounded derivatives
in (2) are equal but opposite in sign so they add up to zero. The other interpretation is the
standard weak (integral) equation such that any finite element of D is in equilibrium.

Although this paper is intended only as an exposition for the theoretical aspects of the
problem considered, the duality theorem (14) is a fundamental basis for good numerical
algorithms. The unique optimality of the primal-dual problems and convergence of an
iterative algorithm can be obtained by the closing of the duality gap. However, the uniguce-
ness of the static and kinematic solutions cannot be guaranteed. This can also be understood
from an engincering viewpoint that the collapse modes may not be unique in reality.
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